Tick paralysis

Read more about this disease, some with Classification – Types – Signs and symptoms – Genetics – Pathophysiology – Diagnosis – Screening – Prevention – Treatment and management – Cures and much more, some including pictures and video when available.

Tick paralysis is the only tick-borne disease that is not caused by an infectious organism. The illness is caused by a neurotoxin produced in the tick’s salivary gland. After prolonged attachment, the engorged tick transmits the toxin to its host. The incidence of tick paralysis is unknown.

Tick paralysis results from inoculation of a toxin from tick salivary glands during a blood meal. The toxin causes symptoms within 2-7 days, beginning with weakness in both legs that progresses to paralysis. The paralysis ascends to trunk, arms, and head within hours and may lead to respiratory failure and death. The disease can present as acute ataxia without muscle weakness.

Patients may report minor sensory symptoms but constitutional signs are usually absent. Deep tendon reflexes are usually hypoactive or absent and ophthalmoplegia and bulbar palsy can occur.

Electromyographic (EMG) studies usually show a variable reduction in the amplitude of compound muscle action potentials but no abnormalities of repetitive nerve stimulation studies. These appear to result from a failure of acetylcholine release at the motor nerve terminal level. There may be subtle abnormalities of motor nerve conduction velocity and sensory action potentials.

Tick paralysis is believed to be due to toxins found in the tick’s saliva that enter the bloodstream while the tick is feeding. The two ticks most commonly associated with North American tick paralysis are the Rocky Mountain wood tick (Dermacentor andersoni) and the American dog tick (Dermacentor variabilis); however, 43 tick species have been implicated in human disease around the world.[1] Most North American cases of tick paralysis occur from April to June, when adult Dermacentor ticks emerge from hibernation and actively seek hosts.[2]. In Australia, tick paralysis is caused by the tick Ixodes holocyclus. Up to 1989 20 fatal cases have been reported in Australia.[3]

Tick paralysis has killed thousands of animals, mainly cows and sheep, in other parts of the world. Although tick paralysis is of concern in domestic animals and livestock in the United States as well, human cases are rare and usually occur in children under the age of 10.

Tick paralysis occurs when an engorged and gravid (egg-laden) female tick produces a neurotoxin in its salivary glands and transmits it to its host during feeding. Experiments have indicated that the greatest amount of toxin is produced between the fifth and seventh day of attachment (often initiating or increasing the severity of symptoms), although the timing may vary depending on the species of tick.

Unlike Lyme disease, ehrlichiosis, and babesiosis, which are caused by the systemic proliferation and expansion of parasites in their hosts long after the offending tick is gone, tick paralysis is chemically induced by the tick and therefore usually only continues in its presence. Once the tick is removed, symptoms usually diminish rapidly. However, in some cases, profound paralysis can develop and even become fatal before anyone becomes aware of a tick’s presence.

[tubepress mode=’tag’, tagValue=’Tick paralysis’]