Alpha 1-antitrypsin deficiency

Read more about this disease, some with Classification – Types – Signs and symptoms – Genetics – Pathophysiology – Diagnosis – Screening – Prevention – Treatment and management – Cures and much more, some including pictures and video when available.

Alpha 1-antitrypsin deficiency (a1-antitrypsin deficiency, A1AD or Alpha-1) is a genetic disorder caused by defective production of alpha 1-antitrypsin (A1AT), leading to decreased A1AT activity in the blood and lungs, and deposition of excessive abnormal A1AT protein in liver cells.[1] There are several forms and degrees of deficiency. Severe A1A deficiency causes emphysema and/or COPD in adult life in nearly all people with the condition, as well as various liver diseases in a minority of children and adults, and occasionally more unusual problems.[2] It is treated by avoidance of damaging inhalants, by intravenous infusions of the A1AT protein, by transplantation of the liver or lungs, and by a variety of other measures, but it usually produces some degree of disability and reduced life expectancy[citation needed].

Symptoms of alpha-1 antitrypsin deficiency include shortness of breath, wheezing, rhonchi, and rales. The patient’s symptoms may resemble recurrent respiratory infections or asthma that does not respond to treatment. Individuals with A1AD may develop emphysema during their thirties or forties even without a history of significant smoking, though smoking greatly increases the risk for emphysema. A1AD also causes impaired liver function in some patients and may lead to cirrhosis and liver failure (15%). It is a leading cause of liver transplantation in newborns.

Please see alpha 1-antitrypsin for a discussion of the various genotypes and phenotypes associated with A1AD.

Alpha 1-antitrypsin (A1AT) is produced in the liver, and one of its functions is to protect the lungs from the neutrophil elastase enzyme, which can disrupt connective tissue. Normal blood levels of alpha-1 antitrypsin are 1.5-3.5 gm/l. In individuals with PiSS, PiMZ and PiSZ phenotypes, blood levels of A1AT are reduced to between 40 and 60% of normal levels. This is usually sufficient to protect the lungs from the effects of elastase in people who do not smoke. However, in individuals with the PiZZ phenotype, A1AT levels are less than 15% of normal, and patients are likely to develop emphysema at a young age; 50% of these patients will develop liver cirrhosis, because the A1AT is not secreted properly and instead accumulates in the liver. A liver biopsy in such cases will reveal PAS-positive, diastase-negative granules.

Cigarette smoke is especially harmful to individuals with A1AD. In addition to increasing the inflammatory reaction in the airways, cigarette smoke directly inactivates alpha 1-antitrypsin by oxidizing essential methionine residues to sulfoxide forms, decreasing the enzyme activity by a factor of 2000.

In the United States, Canada, and several European countries, lung-affected A1AD patients may receive intravenous infusions of alpha-1 antitrypsin, derived from donated human plasma. This augmentation therapy is thought to arrest the course of the disease and halt any further damage to the lungs. Long-term studies of the effectiveness of A1AT replacement therapy are not available. It is currently recommended that patients begin augmentation therapy only after the onset of emphysema symptoms.

Augmentation therapy is not appropriate for liver-affected patients; treatment of A1AD-related liver damage focuses on alleviating the symptoms of the disease. In severe cases, liver transplantation may be necessary.

[tubepress mode=’tag’, tagValue=’Alpha 1-antitrypsin deficiency’]