Phenylketonuria

Read more about this disease, some with Classification – Types – Signs and symptoms – Genetics – Pathophysiology – Diagnosis – Screening – Prevention – Treatment and management – Cures and much more, some including pictures and video when available.

Phenylketonuria (PKU) is an autosomal recessive genetic disorder characterized by a deficiency in the enzyme phenylalanine hydroxylase (PAH). This enzyme is necessary to metabolize the amino acid phenylalanine to the amino acid tyrosine. When PAH is deficient, phenylalanine accumulates and is converted into phenylpyruvate (also known as phenylketone), which is detected in the urine.

Left untreated, this condition can cause problems with brain development, leading to progressive mental retardation and seizures. However, PKU is one of the few genetic diseases that can be controlled by diet. A diet low in phenylalanine and high in tyrosine can be a very effective treatment. There is no cure. Damage done is irreversible so early detection is crucial.

Phenylketonuria was discovered by the Norwegian physician Ivar Asbjørn Følling in 1934[1] when he noticed that hyperphenylalaninemia (HPA) was associated with mental retardation. In Norway, this disorder is known as Følling’s disease, named after its discoverer.[2] Dr. Følling was one of the first physicians to apply detailed chemical analysis to the study of disease. His careful analysis of the urine of two affected siblings led him to request many physicians near Oslo to test the urine of other affected patients. This led to the discovery of the same substance that he had found in eight other patients. The substance found was subjected to much more basic and rudimentary chemical analysis (taste). He conducted tests and found reactions that gave rise to benzaldehyde and benzoic acid, which led him to conclude the compound contained a benzene ring. Further testing showed the melting point to be the same as phenylpyruvic acid, which indicated that the substance was in the urine. His careful science inspired many to pursue similar meticulous and painstaking research with other disorders.

PKU is normally detected using the HPLC test, but some clinics still use the Guthrie test, part of national biochemical screening programs. Most babies in developed countries are screened for PKU soon after birth.[3]

If a child is not screened during the routine Newborn Screening test (typically performed at least 12 hours and generally 24-28 hours after birth), the disease may present clinically with seizures, albinism (excessively fair hair and skin), and a “musty odor” to the baby’s sweat and urine (due to phenylacetate, one of the ketones produced). In most cases a repeat test should be done at approximately 2 weeks of age to verify the initial test and uncover any phenylketonuria that was initially missed.

Untreated children are normal at birth, but fail to attain early developmental milestones, develop microcephaly, and demonstrate progressive impairment of cerebral function. Hyperactivity, EEG abnormalities and seizures, and severe learning disabilities are major clinical problems later in life. A “musty” odor of skin, hair, sweat and urine (due to phenylacetate accumulation); and a tendency to hypopigmentation and eczema are also observed.

In contrast, affected children who are detected and treated are less likely to develop neurological problems and have seizures and mental retardation, though such clinical disorders are still possible.

[tubepress mode=’tag’, tagValue=’Phenylketonuria’]